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SCHEMES TO NON-LINEAR SYSTEMS OF HYPERBOLIC 

CONSERVATION LAWS 
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SUMMARY 
In extending high-resolution methods from the scalar case to systems of equations there are a number of 
options available. These options include working with either conservative or primitive variables, character- 
istic decomposition, two-step methods, or component-wise extension. In this paper, several of these options 
are presented and compared in terms of economy and solution accuracy. The characteristic extension with 
either conservative or primitive variables produces excellent results with all the problems solved. Using 
primitive variables, the two-step formulation produces high-quality results in a more economical manner. 
This method can also be extended to multiple dimensions without resorting to dimensional splitting. Proper 
selection of limiters is also important in non-characteristic extension to systems. 
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1. INTRODUCTION 

In recent years, there has been an abundance of work deriving high-resolution schemes for 
hyperbolic conservation laws. Most of the development is made with scalar equations and 
generalized in some fashion to  non-linear equations or systems of equations. Typically, the 
extension to systems of equations takes on great importance as is the case with the solution of the 
Euler equations of compressible flow. Much of the development of high-resolution methods is 
devoted to  the solution of systems of equations as their primary practical use. 

Among the methods developed in recent years, several stand out as seminal works. Perhaps the 
canonical work in the field was done by Godunov.'*2 This work was the spring-board for most of 
what is considered to be modern upwind methods. This started with the work of Boris and Book3 
and their FCT method. At about the same time, van Leer4-6 had begun his search for the 
'ultimate conservative difference scheme' in a series of classic papers. This work represented 
a complete extension of the ideas of Godunov to higher-order accuracy. 

Godunov's method was truly ingenious in nature, but is only first-order-accurate. This 
inaccuracy manifests itself as numerical viscosity that results in smeared solutions. The beauty of 
this scheme is that the physics of the local exact solution to  the compressible flow equations is 
embedded in the differencing scheme. It is this characteristic that makes Godunov's method so 
important. Van Leer6 takes the differencing scheme developed in Reference 5 and constructs 
a high-order Godunov (HOG) method. The differencing scheme used is unique in that it gives 
higher-order accuracy without dispersive ripples. This is accomplished by making the difference 
scheme itself non-linear and meeting monotonicity constraints. 
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These methods have been at  the genesis of a wider development of methods in the past decade. 
The notion of Total Variation Diminishing (TVD) schemes as introduced by Harten7** has given 
a mathematical theory to back the use of these methods. Other schemes such as those developed 
by Colella and Woodward,' Colella" and Osherl' are close.to van Leer's work, but in each case 
enrich and extend the overall methodology. The contribution of Essentially Non-Oscillatory 
(ENO)  scheme^'^-^^ is worth noting. This class of methods extends the HOG methodology to 
arbitrarily high orders of accuracy. 

A system of hyperbolic conservation laws can be written as 

-+-- - 0. au ~ F ( u )  
at ax 

A system of equations is strictly hyperbolic if its associated signal speeds are real in value and 
distinct. This condition applies to the eigenvalues of the flux Jacobian, A = dF/BU (i.e. that they be. 
real), but also that they be distinct. Given the eigenvectors of A, r k ,  an eigenvalue, q k ,  is defined as 
being genuinely non-linear if 

and linearly degenerate if 

as given by Lax." Examples of genuinely non-linear eigenvalues are the characteristic speeds 
associated with sound waves in the Euler equations. Shocks and rarefactions are associated with 
this sort of eigenvalue. A linearly degenerate eigenvalue is associated with the eigenvalue(s) 
associated simply with the material velocity in the Euler equations. Contact discontinuities are 
associated with this type of eigenvalue. This theory is of some consequence when considering 
what limiters to apply to a scheme. 

Non-strictly hyperbolic systems are frequently solved by the methods discussed in this paper. 
In a number of cases (such as extension to multidimensional problems), this is not a severe 
problem. In other cases where the coincidence of eigenvalues is not trivial in nature, the 
consequences on the solution procedure are more severe. An example of the type of steps taken to 
deal with such cases is given in Reference 16. 

This paper does not cover all the possible methods for extending high-resolution schemes to 
systems of equations. It also does not cover all the high-resolution schemes. Rather, this paper 
describes, and discusses several methods for extension with regard to one high-resolution scheme. 
This is done in an effort to remain as impartial and objective as possible. Further extensions can 
follow from this work in a logical fashion. 

This paper is divided into five sections. Section 2 introduces the methods used for a scalar wave 
equation. In Section 3, each of these methods is extended to systems of equations. Section 4 
presents and discusses results found using these methods for the Euler equations. Finally, 
concluding remarks are found in Section 5. An appendix describes the characteristic decomposi- 
tion for both conserved and primitive variables. 

2. PRELIMINARIES 

In this paper, we will concentrate our efforts on one specific method and its extension to systems 
of equations. This method is a standard second-order HOG method augmented with TVD 
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limiters.17'18 As noted in References 12 and 19 the process of solving a problem with a Godunov- 
type method can be divided into two basic steps: reconstruction and evolution. The evolution step 
involves the use of some sort of exact or approximate Riemann solvers (see, for example, 
References 20 and 21). The issue at hand here is the method of reconstruction for systems of 
equations. 

The reconstruction step requires that a piecewise polynomial (or some functional representa- 
tion) be defined for each cell of the system to reconstruct the variables distribution in space to 
some level of desired accuracy. In this paper, the following form will be used for this polynomial: 

where 

(3b) 

Aj-1/2U=uj-uj-1. (34 

hl 

Aju=Q(r)Aj-l/zu, 

with 

The mesh spacing is Ajx=xj+l12-xj-1,2, xj=(xj+112+xj-112)/2 and r=Aj+112u/Aj-l12u. The 
function Q(r) is a limiter. These schemes are second-order-accurate. For higher spatial order, the 
degree of the polynomial can be i n c r e a ~ e d . ~ . ' ~ , ' ~  

Two common limiters will be used in this study. Figure 1 shows the limiters behaviour for 
a range of r. The limiters are the centred limiter6 

Q,(r)=maxCO, min(2,2r,+(l +r))] ( 4 4  

QsB(r) =max[O,min(2,r),min(l,2r)]. (4b) 

and the superbee limiter" 

The methodology chosen for extending the method derived for the scalar wave equation to 
systems can impact the choice of limiters. As will be seen in Section 4, the choice of limiters can 
have profound impact on the quality of the solutions. 

Q 

I 

Figure 1. The two argument limiters used in this study are shown. The shaded area shows the second-order TVD region 
for the scheme used here. Both Q, and Qss are second-order limiters, with Qse defining the upper boundary of the 

second-order TVD region 
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The polynomial is then used to define left and right states of the variables at each cell edge, 
uL and uR. These quantities are then used to determine a cell-edge numerical flux fLR via 
a Riemann solver. In the cases (except one as explained in Section 4.3) considered in this paper, 
Roe’s approximate Riemann solverz3 will be used. The basics of this method for systems of 
equations is given in the following section. For a scalar wave equation, Roe’s method can be 
written as 

f L R  = f [ . f (uL)  + f ( U R ) -  I aLR I (uR - UL)] 9 (54  
with 

where A= AtlAx. For second-order temporal accuracy, the interface values for u should be 
time-centred estimates. For extension to systems not using a characteristic decomposition, it is 
likely that other approximate Riemann solvers will be used. 

2. I .  Lax- Wendroff-type diferencing 

Another issue easily addressed with simple model problems is time accuracy. For a second- 
order-accurate scheme spatially, it is often important to attain second-order accuracy temporally. 
A common practice is to use a Lax-Wendroff approach to time accuracy. From one point of view, 
this reduces to characteristic tracing at the cell edges to get a time-centred estimate of the 
cell-edge state. For our numerical scheme this yields the following form for cell-edge states: 

d 

(74  

(7b) 
This can also be viewed as evaluating in the integral in (6b) by a midpoint or trapezoidal rule. This 
comparison is shown in Figure 2. 

n + l / Z  
u j + l / Z , L = U j + t A j U  (1 - 2 a L R )  

and 
n + 1 / 2  

u j + 112,  R = u j + 1 - ~AFI U ( 1 + 2 % ~  ). 

2.2. Two-step formulation 

This procedure becomes more difficult when systems of equations are considered. To combat 
this difficulty, a procedure in the spirit of the two-step Lax-Wendroff scheme,24* 2 5  has been 
~ s e d . ~ ~ * ~ ’  The left and right states are computed from the reconstructive polynomial and then 
used to produce time-centred estimates for the cell-edge states. Given the cell-edge states, 
uJ+ 1/2,L and u;+ 1 / 2 , R ,  computed with a high-order method, the time-centred estimates are 
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Figure 2. Two views of time-accurate computation of cell-edge values. The first view (top) corresponds to characteristic 
tracing to find the cell-edge timecentred values given by (7a) and (7b). The second view (bottom) corresponds to finding 
the cell-edge time-averaged values through temporal integration of (6b) using the midpoint rule. The top view also 

corresponds to evaluating the integral (6b) through the trapezoidal rule 

and 

(W 
n + 1 / 2  n A 

uj+ 1 / 2 , R = U j +  1/2,R-I[f(U;+3/2.1.)-f(U;+ 1 / Z , R ) 1 .  

This gives second-order tempbra1 accuracy and is equivalent to the Lax-Wendroff-type proced- 
ure for scalar equations. 

Remark 1. Davisz8 presents an alternate two-step method that is similar. In that method, the 
first step is 

2.3. Component-wise extension 

A third approach is also available. This approach involves the separate limiting of the flux 
vector and the solution variable. It has been used by Reference 29 with a high-order 
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Lax-Friedrichs solver.* This method makes use of an identity, f(u) = au, which implies that 

a j  au 
ax ax -=a--, 

where a=dj(u)/du, which gives an equivalent form to that used above with a Lax-Wendroff 
approach. This approach has the limitation of being only correct at the point wheref(u) is 
evaluated if the equation is non-linear. Thus, it has the effect of 'freezing' the Jacobian at the point 
where it is evaluated. Specifically, this can be written 

c v -  
(1 la) ~ j +  n + 1 / 2  ~ / ~ . L = U ~ + J A ~ U - $ A A ~ &  

and 

where 

Similar to the approach taken with the interpolation of the dependent variables, 
r=Aj+  l12flAj-llzfand Aj- Again for the scalar wave equation, this is equivalent 
to the Lax-Wendroff-type of time differencing. 

f=&-fj- 

3. METHOD FOR EXTENSION TO SYSTEMS 

This section will concern itself with the subject of extending the methods described in the previous 
section to systems of equations. We will deal with the specific case of the Euler equations for the 
conservation of mass, momentum and total energy: 

ap am 
-+-=0, 
at ax 

2 +& (% + p )  = 0 

and 

where E = p e + f m 2 / p  with an equation of state p = f ( p , e )  taken for an ideal gas is 

P = P 4 l J  - 1 1 9  (124 

where y 
(1) with 

is the ratio of specific heats. This equation set can be put in 

r m l  

U= m and F(U)= [ 3 mz 

P 
m 
- ( E + P )  
P - 

a convenient vector form, i.e. 

* The approach taken here uses Roe's Riemann solver rather than a Lax-Friedrichs Riemann solver. This is done in 
order to put the different methods on equal footing. 
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The above system of equations can be written is the so-called primitive variable form. It has 
been suggested that this system of variable should be used to determine cell-edge ~ t a t e s . ~ O * ~  In the 
above form the variables are conserved quantities (p ,  m, QT, but in the form given below the 
variables are ( p ,  u, e)T, the density, velocity and internal energy. This set of equations is 

and 

aP 8 P U  -+-=0, 
at ax 

au au 1 a p  
at ax p a x  
-+u-+--=o 

de ae p a u  - + u-+--=o. 
at ax p a x  

Of the methods available for extending the scheme outlined in the previous section, the 
characteristic decomposition due to Roez3 is the most common. In this method, a similarity 
transform takes the variable from the conservative form to a characteristic form. Each variable 
can then be computed at the cell edges from its characteristic contributions. This methodology 
can also be applied to the primitive variables in a similar manner. 

The system of equations given above is hyperbolic if the eigenvalues of the flux Jacobian, 
aF/aU, are real and distinct.” The Jacobian of the flux function is used to derive a characteristic 
decomposition of the system of equations; thus, in general, 

au aF au au 
at ax at ax -+-=o * --+A-=O, 

where A = dF/BU is the flux Jacobian matrix. This is a local linearization of the system. The 
relation is exact for a linear system, but not for a non-linear system (away from the point where 
the Jacobian is evaluated). For a non-linear system, this linearization has the effect of ‘freezing’ the 
Jacobian locally. If we define the decomposition as 

A =  RAR- I,  

A is a diagonal matrix with the eigenvalues of A, qk, on the diagonal, R is the matrix of right 
eigenvectors (columns), and R -  ’ is the matrix left eigenvectors (rows). For linear systems, the 
characteristic equations are then defined as 

aa aa 
at ax -+h-=O, 

where a= R-lU. These equations can be solved with upwind biased methods to get physically 
correct propagation of information for data associated with each separate wave. This procedure 
will be used for non-linear systems to approximate wave propagation locally. 

Thus, each characteristic is limited separately in defining the new cell-edge value of U. For this 
purpose, we define 

3 -  AT= rkAjak, 
k = l  
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where 
h/ 

Aja=Q(r)Aj- 1 / 2 ~  

for each component of U where r= Aj+  l / z ~ / A j -  1 1 2 ~ .  

The characteristic approach must also be integrated into the attainment of temporal accuracy. 
Each wave in the above decomposition travels at different speeds and they can also travel in 
different directions. For this reason, the cell-edge quantities are computed from the following 
formulas: 

l 3  'v 

Uj+l /z ,~=Uj+-  C rk(l  -qkA)Ajak 
2 k = l  

and 

This decomposition can be done for both systems of equations above and is detailed in the 
appendix. 

This method is aesthetically pleasing because the coupled non-linear system is locally reduced 
to a set of decoupled scalar equations. Because of this, the theory developed and applied to 
simpler model problems carries over without interference to systems. On the other hand, the 
expense associated with procedure (especially when multidimensional or more complex systems 
are considered) makes them less attractive than other alternatives. A modification of this method 
that is touted as increasing the robustness of the reconstruction is given in Reference 30. This 
method takes into account the direction of wave carrying information and only allows physically 
meaningful reconstructions to occur. 

The other options described in Section 2 are somewhat more straightforward to implement for 
systems of equations. The two-step method is simply applied in a vector fashion, i.e. 

The cell-edge values at time level n can be computed in a component-wise or characteristic 
fashion. For the component-wise fashion the values are 

h/ 

U;+1/2,L=U;+fAjU 

and 

and for the characteristic extension 

l 3  - 
U;+1/2,L=U;+- rkAjcIk 

2 k = l  

and 
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Similarly the component-wise extension method can be extended by using limited values of the 
flux function for each of a system's equations. Thus, the method can be written as 

h / h /  

( 1 W  uy + 112 
j + 1/2, L = Uj + t (AjU -AAjF) 

For both of these methods, the computation of the cell-edge value could be done in either 
conservative, primitive or characteristic variables. The advantage of the two-step or the compon- 
ent-wise extension methods can only be obtained if the interpolation is done in either the 
conservative or primitive variables because of the relative simplicity of each formulation. 

Another issue of some importance is the application of limiters in computing the piecewise 
polynomials. It is common practice to use a compressive limiter such as superbee on the field that 
produces the contact discontinuity. The compression given by the limiter maintains the sharpness 
of the interface. The same limiter when applied to shocks or rarefactions can produce entropy 
violating solutions. For the characteristic decomposition the implementation of this is quite clear. 
For other methods not involving characteristic decomposition it is usual practice to apply the 
compressive limiter to the computation of the density p r ~ f i l e . ~  

In calculating the results given in the following section, the criteria given above was used in 
choosing the limiters. For characteristic decompositions of the equations, the centred limiter was 
used on the non-linear fields, and the superbee limiter was used on the linearly degenerate field. 
For methods employing the two-step or component-wise extension to systems, the superbee 
limiter was used on the density reconstruction, and the centred limiter was used on the remaining 
variables. 

4. COMPARISON OF METHODS 

In the following section, we will compare the performance of the methods for several standard test 
problems for the Euler equations in one space dimension. The results of this discussion should 
provide guidance for more complex systems of equations as well as guidance in a route to take in 
extending these methods to multidimensional problems. In the interests of saving space, 
Table I lists the abbreviations used in this section to describe the methods. 

4.1. Sod's problem 

The problem used by Sod31 to test a number of methods for solving the equations of 
compressible flow has become a standard test problem. The initial condition for this problem 
consists of two semi-infinite states separated at t = O ,  and the left and right states are set to the 

Table I. Abbreviations for the methods used in this study 

Scheme Abbreviation Section 

Characteristic-conservative variables 
Characteristic-primitive variables 
Two-step-conservative variables 
Two-step-primitive variables 
Component-wise-conservative variables 
Component-wise-primitive variables 

cc 
PC 
CR 
PR 
CF 
PF 

2.1 
2.1 
2.2 
2.2 
2.3 
2.3 
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following conditions: 

for X < 50.0 

for X 2 50.0 

with y =  1.4. The domain is 
number is set to 0.9. The solutions are shown at t=20. 

good and exhibit the qualities one would expect with a high-resolution numerical solution. 

iscretized into 100 cells of equa. a g t h s  (Ax= 1-0) and the CFL 

The solutions to Sod‘s problem can be seen in Figures 3-8. In general, the solutions are quite 
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0.4 0.2 

0.2 0 

0 -0.2 
0 20 40 60 80 100 0 20 40 60 80 loo 

X X 

Figure 3. Sod’s problem computed with the characteristic formulation with conservative variables. In these figures, the 
solid line denotes the exact solution, whereas the circles denote the approximate numerical solution 
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X 

Figure 4. Sod‘s problem computed with the characteristic formulation with primitive variables 
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The solutions found with the CC method are seen in Figure 3. They are qualitatively quite 
good, with the only problem being the glitch in the velocity at the end of the rarefaction wave. 
With the PC method the velocity glitch is gone, but a small rise is before to the shock. As can be 
seen in Figure 4, the density profile is nearly identical to that found with the CC method. 

With the two-step formulation, the solutions are again quite good as can be seen in Figures 5 
and 6. The major problems can be seen with the velocity profiles where small problems exist with 
at the end of the rarefaction wave and in the post-shock region of the flow. These problems are 
not major in nature. Major features of the flow field such as the shock, contact discontinuity and 
rarefaction wave are resolved well. 

The component-wise extension of the schemes has a few more problems. In Figures 7 and 8 the 
solutions are shown. The shock wave is exceptionally sharp, improved over the other methods, 
but in both the conservative and primitive variable formulation there are a number of small 
oscillations in the velocity solution between the rarefaction and shock waves. In this case, these 
oscillations are not destructive, but detract from the overall quality of the solutions. 

In Table 11, the L ,  norm errors using these methods are shown. In these terms the best solution 
is the PC method with both of the two-step methods of slightly lower quality. The PF method is 

-0.2 
0 20 40 60 80 100 0 20 40 60 80 100 

X X 

Figure 5. Sods problem computed with the two-step formulation with conservative variables 
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-0.2 J 0- c t 
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Figure 6. Sod’s problem computed with the two-step formulation with primitive variables. Note the small spikes at the 
end of the rarefaction waves and the post-shock spike in the velocity solution 
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Figure 7. Sod’s problem computed with the component-wise formulation with conservative variables. Note the small 
oscillations in the velocity solution between the rarefaction and shock waves 
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Figure 8. Sod’s problem computed with the component-wise formulation with conservative variables. Note the small 
oscillations in the velocity solution between the rarefaction and shock waves 

the worst, with the CC formulation slightly better. However, the better qualitative appearance of 
the CC makes it much superior to the PF method. 

4.2. Lux’s problem 

Lax’s problem is a shock tube problem similar to Sod’s, but with one of the two semi-infinite 
states used as initial conditions not being at rest. The initial condition for this problem consists of 
two semi-infinite states separated at t = O ,  the left and right states are set to the following 
conditions: 

for X < 50.0 

0.445 
0698 
3.528 
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Table 11. The L ,  error norms for each scheme on Sod’s 
problem 

Scheme Density Velocity 

cc 
PC 
CR 
PR 
CF 
PF 

5.86 x 10-3 1.19 x 
4-90 x 10-3 6.14 x 10-3 
5.26 x 10-3 1.21 x 10-3 
5-45 x 10- 7.58 x 10-3 
5.34 x 10-3 9.33 10-3 
6-20 x 10- 3 1.22 x 10-2 
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0.2 -0.5 
0 20 40 60 80 100 0 20 40 60 80 100 
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Figure 9. Lax’s problem computed with the characteristic formulation with conservative variabies. With the exception of 
this solution, all the solutions to  Lax’s problem have small spikes or oscillations associated with the contact discontinuity. 
This is indicative of the overcompressive nature of the limiter placed on the density. The conservative characteristic 

formulation guards against this problem 

for X 2 50.0 

[ 121 = [ ::; 0.571 1, 
with y=1.4. The domain is discretized into 100 cells of equa 
number is set to 0-9. The solutions are shown at t = 15. 

lengths (Ax= 0) and the CFL 

The solutions to this problem by the methods discussed in this paper are shown in Figures 
9-14. Again the solutions are quite good across the board, but problems with the methods show 
more strongly in the density profiles. The region between the shock wave and the contact 
discontinuity is sensitive to the limiter used, and in the non-characteristic methods, problems 
show up. 

Figures 9 and 10 show the CC and PC solutions to Lax’s problem, respectively. The only 
problem with these solutions is evident in the PC velocity solution where a small dip in the 
velocity is present coincident with the contact discontinuity. This problem also shows up with all 
the other methods. This is an artifact of the compressive superbee limiter used on the linearly 
degenerate wave. When other less compressive limiters are used, the problems associated with the 
contact discontinuity are removed from the solutions. 
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Figure 10. Lax’s problem computed with the characteristic formulation with primitive variables. Despite using a charac- 
teristic formulation, a small oscillation is present with the contact discontinuity 
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Figure I t .  Lax’s problem computed with the two-step formulation with conservative variables 
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Figure 12. Lax’s problem computed with the two-step formulation with primitive variables 



EXTENSION TO SYSTEMS O F  EQUATIONS 875 

1.4 

1.2 

1 

P 0.8 

0.6 

f 0.4 

i 
0 20 40 60 80 100 

X 

0.2 7 L 

1.5 

1 
U 

0.5 

0 

-0.5 
0 20 40 60 80 100 

X 

Figure 13. Lax’s problem computed with the component-wise formulation with conservative variables 
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Figure 14. Lax’s problem computed with the component-wise formulation with conservative variables 

Table 111. The L ,  error norms for each scheme on Lax’s 
problem 

Scheme Density Velocity 

cc 
PC 
CR 
PR 
CF 
PF 

1.46 x lo-’  
1.92 x lo-’ 
1.30 x lo-’ 
1.52 x lo-’  1.61 x 
1.29 x lo-* 
1.44 x 1 0 - 2  1.62 x 

1.61 x lo-’ 
1.42 x lo-’ 
1.53 x lo-’ 

1.54 x 10-2  

Figures 11-14 show the solutions found with other methods. These solutions all share common 
characteristics. The contact discontinuity causes oscillations in the solutions as evident in both 
the density and velocity profiles. These oscillations are more severe in the primitive variable 
formulations. These oscillations can be controlled through another choice of a limiter to apply to 
the density interpolation. 
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In terms of L1 error (see Table III), the conclusions that are drawn are somewhat different to 
those found with Sod’s problem. The velocity errors are very close in magnitude and no real 
conclusions can be drawn from them. The density errors seem to favour the conservative 
formulations, but for the two-step or component-wise formulations the differences are not 
profound. 

4.3. Vacuum problem 

As noted in Section 2, one case in this study does not use Roe’s approximate Riemann solver. 
The case of the vacuum problem considered below cannot use Roe’s solver as explained in 
Reference 32. For this case, a more diffusive scheme is used to maintain physical solutions. This is 
the HLLE Riemann ~ o 1 ~ e r , ~ ~ * ~ ~ ~ ~ ~  which is briefly described below. 

This method has several desirable properties: its simplicity, ease of implementation and 
satisfaction of entropy inequalities. The general form of a flux function with this solver is 

where bLR =max(0, h tR)  and biR =min(O, bLR). The signal speeds bLR and bzR are upper and lower 
bounds on the signal velocities, respectively. Reference 32 makes the suggestion for the computa- 
tion of biR and bLR. The formulas are 

b t R  = max(aR, max, ULR, ma,) (1 9b) 

where max and min refer to the maximum and minimum characteristic speeds at the respective 
locations. The values for uLR come from the Roe linearization that will be discussed below. 

The vacuum problem is a shock tube problem where two identical states are moving away from 
each other at t =O. The states are kinetic-energy-rich, which causes problems for the finite 
difference schemes. The initial condition for this problem consists of two semi-infinite states 
separated at t =0, the left and right states are set to the following conditions: 

for X < 50.0 

for Xr50.0 

[ = [ :s 
1 -0 

with y=1-4. The domain is discretized into 100 cells 3f equal lengths (Ax = 1.0) and the CFL 
number is set to 0.9. The solutions are shown at t=10. An additional caveat is that the 
computation of the stability criteria also involves the condition based on a condition similar to 
the ‘tangling’ or ‘emptying’ conditions in Lagrangian computations, i.e. 

where Ce[O, 13. 
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The solutions found with the CC, PC, PR and PF (Figures 15- 20) methods are not worth much 
discussion. All of them are quite good and appear to be nearly identical in terms of resolution. 
Table IV shows this as well. 

The solutions found with the CR and C F  methods do warrant some discussion. The CR 
solution is shown in Figure 17 and the C F  solution in Figure 19. Both solutions are of exceedingly 
poor quality. In fact, if measure had not been taken to prevent this, the computer code should 

0 20 40 60 80 100 
X 

-3 
0 20 40 60 80 100 

X 

Figure 15. The vacuum problem computed with the characteristic formulation with conservative variables 

1.2 

1 

0.8 

p 0.6 

0.4 

0.2 

0 
0 20 40 60 80 100 

X X 

Figure 16. The vacuum problem computed with the characteristic formulation with primitive variables 

Table TV. The L ,  error norms for each scheme on the vacuum 
problem 

Scheme Density Velocity 

cc 
PC 
CR 
PR 
CF 
PF 

1.27 x lo-’ 
1.24 x 2.85 x 
2.72 x 10- ‘ 
1.20 x 10-2 
2.81 x lo-’ 
1-20 x 10-2 

2.63 x lo-’ 

1.00 x 10-1 
2.39 x lo-’ 
5.85 x lo-* 
2.40 x lo-’ 
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0 20 40 60 80 100 
X 

-3 
0 20 40 60 80 100 

X 

Figure 17. The vacuum problem computed with the two-step formulation with conservative variables. The use of 
conservative variables with this flow is disastrous. The total energy has become negative in the region around X=50 

-3 
0 20 40 60 80 100 

X X 

Figure 18. The vacuum problem computed with the two-step formulation with primitive variables 
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X 

Figure 19. The vacuum problem computed with the component-wise formulation with conservative variables. The 
conservative variables have not guaranteed that positive-definite quantities (total energy) stay positive-definite 
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0 20 40 60 80 100 0 20 40 60 80 100 
X X 

Figure 20. The vacuum problem computed with the component-wise formulation with primitive variables 

have blown up early in the solution process. This is because the total energy in the solutions 
becomes negative in the vicinity of the vacuum in the solution. The use of the conservative 
variables in a non-characteristic method when the solution is kinetic-energy-rich causes the 
problem. This is akin to the problems with the Roe linearization studied in Reference 32. The 
interpolation of the variables creates non-physical states in the total energy. Lowering the 
compression of the limiters alleviates this problem as does moving to primitive or characteristic 
variables for the interpolation. 

4.4. Blast wave problem 

This blast wave problem was used by Woodward and C01el la~~ to test a variety of high- 
resolution methods. This test turns out to be an extremely stringent test of numerical methods for 
solving hyperbolic conservation laws. The initial conditions consist of the following: 

for X I  10.0 [;;I = [ l;/! 
[ail = [ 0.0 ar 1 1, 

- 
for 10.0 > X > 90.0 

for X 2 90.0 

[ ;:] = [ 100.0 A::], 
with y =  1.4. The domain is discretized into 400 cells of equal lengths (Ax=O-25) and the CFL 
number is set to 0.95. The boundary conditions play an important role in this problem and are 
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reflective at both the left ( X  = 0) and right ( X  = 100) walls. The solutions are shown at t = 3.80. The 
solution develops into two strong shock waves that collide. The result of this is a complex set of 
shock and rarefaction waves as well as contact discontinuities in a small region of space. These 
interactions are exceedingly difficult to resolve on a fixed Eulerian grid without prior knowledge 
of the solution so that the grid can be locally refined (certain adaptive meshing procedures can 
avoid the need for a pi-iori knowledge of the solution). The ‘exact’ solution is found with the CC 
method using 2000 grid points. 

The solutions are in general all quite good. The major features of this complex flow field are all 
depicted in the plotted density profiles (Figures 21-26). The major differences can be seen in the 
resolution of the contact discontinuity at X ~ 6 0 ,  the ‘well’ at Xx75, and the peak at Xx80. 

In Figure 21, the CC method‘s major problem is the clipping of the second peak in the solution. 
Other features are well resolved in comparison to the other methods. The PC method (Figure 22) 
smears all the features of the flow considerably more than the CC method. The CR method is 
generally like the CC method with the exception of the contact discontinuity at X z 60, which is 

X 

Figure 21. The blast wave problem computed with the characteristic formulation with conservative variables. The first 
peak is captured very well, but the second is clipped severely. With the blast wave solution, the ‘exact’ solution is marked 

by the dashed line and the approximate numerical solution by the solid line 

7-1 f 

0 20 40 60 80 100 

X 

Figure 22. The blast wave problem computed with the characteristic formulation with primitive variables. Both peaks are 
clipped and the contact discontinuity at X-60 is smeared 
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0 20 40 60 80 100 

X 

Figure 23. The blast wave problem computed with the two-step formulation with conservative variables. This is similar 
to Figure 21, but the contact discontinuity at X=60 is smeared significantly more 

0 20 40 60 80 100 

X 

Figure 24. The blast wave problem computed with the two-step formulation with primitive variables. This solution is 
highly resolved and is of high quality with the exception of the overshoot of the second peak 

0 20 40 60 80 100 
X 

Figure 25. The blast wave problem computed with the component-wise formulation with conservative variables. This 
solution is fairly well resolved, but is somewhat ‘noisier’ than other solutions 
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Figure 26. The blast wave problem computed with the component-wise formulation with conservative variables. This 
solution is very similar to Figure 24 

Table V. The times for the blast wave solution computation using each method 

Scheme Total time (s) Percentage in reconstruction 

cc 81.93 
PC 79.4 1 
CR 82.49 
PR 72.04 
CF 84.22 
PF 69.07 

49.58 
49,55 
43.12 
42.57 
40.44 
40.54 

smeared much more than that by the CC method. The solution is somewhat ‘noisier’ with 
over/undershoots in several locations. These characteristics are duplicated in large part by the CF 
method (cf. Figures 23 and 25). 

The PR and PF methods produce nearly same results. Both solutions are remarkably crisp and 
each feature in the flow field is sharply defined. Figures 24 and 26 also show the major detriment 
to these solutions. The second peak ( X  x 80) significantly overshoots the ‘exact’ solution. Never- 
theless, the solution found by these methods is quite good in all other respects. 

5. CONCLUDING REMARKS 

Table V shows the total time taken for the blast wave solutions and the percentage of that time 
taken by the reconstruction of the cell-edge values.? In terms of economy, the PR and PF 
methods have clear advantages. Taking this into account with the results in mind several 
conclusions can be drawn. These conclusions are summarized below: 

(a) All the methods described in the paper p r o d y  quality results. 
(b) When a non-characteristic extension is used‘care must be taken in applying limiters (to not 

(c) For non-characteristic extensions, the primitive variables formulation should be used. 
(d) Non-characteristic formulations using the primitive variables are lower in cost. 

over-compress the density). 

t The timings were done on a SPARCStation 2 running SunOS 4.1.lb. 
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A =  

Another point not emphasized here has been extension to multiple dimensional problems. All 
of these methods can be used with a dimensional splitting method, but the two-step method has 
clear applicability to a purely multidimensional methods without splitting. This is clearly an 
advantageous feature. In sum, both of the characteristic approaches (CC and PC) are reliable and 
produce excellent results in all cases. The two-step primitive variable method (PR) with appropri- 
ate selection of limiters is both economical and has applicability to a multidimensional algorithm. 

U 2  
( y - 3 ) T  ( 3 - Y ) U  Y-1 , 
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APPENDIX: THE CHARACTERISTIC DECOMPOSITION OF THE EULER 
EQUATIONS 

This appendix is a detailed description of the characteristic decomposition used in obtaining the 
results given in this paper. For the Euler equations in conservation from the flux Jacobian is 

r o  1 0 1  

L 

where H = ( E + p ) / p .  The eigenvalues of this matrix are 

( v ] ' ,  1 2 ,  q3)=(u,  u +c, u - c). 

The right eigenvectors form a matrix - 
1 1 

u+c u - c  
3u2 H+uc  H-uc 

- 
and by using 

and 

Y-1 
c2 ' 

z2=- 

the left eigenvectors form a matrix 

L 
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The equations in primitive form give a much simpler system. The equation set does not have 
a conservation form and can be written as 

where 

A =  

Again, the eigenvalues of this matrix are 

au au 
at ax -+A-=O 

(q l ,  1 2 ,  q3)=(u, u+c,  u-c). 

The right eigenvectors form a matrix 

R=(rl, r2, r3)= 
c 

-- 
P 

P - 
P2 

P 4 P2 

and by using z1 = ( y -  l)pz and z2=2yp, the left eigenvectors form a matrix 

R -  

0 

P 
2c 

_- 

P 
2c 
- 
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